Get Affordable VMs - excellent virtual server hosting


browse words by letter
a b c d e f g h i j k l m n o p q r s t u v w x y z
bignum


bignum


  2  definitions  found 
 
  From  Jargon  File  (4.2.3,  23  NOV  2000)  [jargon]: 
 
  bignum  /big'nuhm/  n.  [common;  orig.  from  MIT  MacLISP]  1. 
  [techspeak]  A  multiple-precision  computer  representation  for  very 
  large  integers.  2.  More  generally,  any  very  large  number.  "Have  you 
  ever  looked  at  the  United  States  Budget?  There's  bignums  for  you!" 
  3.  [Stanford]  In  backgammon,  large  numbers  on  the  dice  especially  a  roll 
  of  double  fives  or  double  sixes  (compare  {moby},  sense  4).  See  also 
  {El  Camino  Bignum}. 
 
  Sense  1  may  require  some  explanation.  Most  computer  languages 
  provide  a  kind  of  data  called  `integer',  but  such  computer  integers  are 
  usually  very  limited  in  size;  usually  they  must  be  smaller  than  2^(31) 
  (2,147,483,648)  or  (on  a  {bitty  box})  2^(15)  (32,768).  If  you  want 
  to  work  with  numbers  larger  than  that  you  have  to  use  floating-point 
  numbers,  which  are  usually  accurate  to  only  six  or  seven  decimal  places. 
  Computer  languages  that  provide  bignums  can  perform  exact  calculations 
  on  very  large  numbers,  such  as  1000!  (the  factorial  of  1000,  which 
  is  1000  times  999  times  998  times  ...  times  2  times  1).  For  example, 
  this  value  for  1000!  was  computed  by  the 
  MacLISP  system  using  bignums: 
 
  40238726007709377354370243392300398571937486421071 
  46325437999104299385123986290205920442084869694048 
  00479988610197196058631666872994808558901323829669 
  94459099742450408707375991882362772718873251977950 
  59509952761208749754624970436014182780946464962910 
  56393887437886487337119181045825783647849977012476 
  63288983595573543251318532395846307555740911426241 
  74743493475534286465766116677973966688202912073791 
  43853719588249808126867838374559731746136085379534 
  52422158659320192809087829730843139284440328123155 
  86110369768013573042161687476096758713483120254785 
  89320767169132448426236131412508780208000261683151 
  02734182797770478463586817016436502415369139828126 
  48102130927612448963599287051149649754199093422215 
  66832572080821333186116811553615836546984046708975 
  60290095053761647584772842188967964624494516076535 
  34081989013854424879849599533191017233555566021394 
  50399736280750137837615307127761926849034352625200 
  01588853514733161170210396817592151090778801939317 
  81141945452572238655414610628921879602238389714760 
  88506276862967146674697562911234082439208160153780 
  88989396451826324367161676217916890977991190375403 
  12746222899880051954444142820121873617459926429565 
  81746628302955570299024324153181617210465832036786 
  90611726015878352075151628422554026517048330422614 
  39742869330616908979684825901254583271682264580665 
  26769958652682272807075781391858178889652208164348 
  34482599326604336766017699961283186078838615027946 
  59551311565520360939881806121385586003014356945272 
  24206344631797460594682573103790084024432438465657 
  24501440282188525247093519062092902313649327349756 
  55139587205596542287497740114133469627154228458623 
  77387538230483865688976461927383814900140767310446 
  64025989949022222176590433990188601856652648506179 
  97023561938970178600408118897299183110211712298459 
  01641921068884387121855646124960798722908519296819 
  37238864261483965738229112312502418664935314397013 
  74285319266498753372189406942814341185201580141233 
  44828015051399694290153483077644569099073152433278 
  28826986460278986432113908350621709500259738986355 
  42771967428222487575867657523442202075736305694988 
  25087968928162753848863396909959826280956121450994 
  87170124451646126037902930912088908694202851064018 
  21543994571568059418727489980942547421735824010636 
  77404595741785160829230135358081840096996372524230 
  56085590370062427124341690900415369010593398383577 
  79394109700277534720000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  000000000000000000. 
 
 
 
  From  The  Free  On-line  Dictionary  of  Computing  (13  Mar  01)  [foldoc]: 
 
  bignum 
 
    /big'nuhm/  (Originally  from  {MIT}  {MacLISP})  A 
  {multiple-precision}  computer  representation  for  very  large 
  integers. 
 
  Most  computer  languages  provide  a  type  of  data  called 
  "integer",  but  such  computer  integers  are  usually  limited  in 
  size;  usually  they  must  be  smaller  than  2^31  (2,147,483,648) 
  or  (on  a  {bitty  box})  2^15  (32,768).  If  you  want  to  work  with 
  numbers  larger  than  that  you  have  to  use  {floating-point} 
  numbers,  which  are  usually  accurate  to  only  six  or  seven 
  decimal  places.  Computer  languages  that  provide  bignums  can 
  perform  exact  calculations  on  very  large  numbers,  such  as 
  1000!  (the  factorial  of  1000,  which  is  1000  times  999  times 
  998  times  ...  times  2  times  1).  For  example,  this  value  for 
  1000!  was  computed  by  the  {MacLISP}  system  using  bignums: 
 
  40238726007709377354370243392300398571937486421071 
  46325437999104299385123986290205920442084869694048 
  00479988610197196058631666872994808558901323829669 
  94459099742450408707375991882362772718873251977950 
  59509952761208749754624970436014182780946464962910 
  56393887437886487337119181045825783647849977012476 
  63288983595573543251318532395846307555740911426241 
  74743493475534286465766116677973966688202912073791 
  43853719588249808126867838374559731746136085379534 
  52422158659320192809087829730843139284440328123155 
  86110369768013573042161687476096758713483120254785 
  89320767169132448426236131412508780208000261683151 
  02734182797770478463586817016436502415369139828126 
  48102130927612448963599287051149649754199093422215 
  66832572080821333186116811553615836546984046708975 
  60290095053761647584772842188967964624494516076535 
  34081989013854424879849599533191017233555566021394 
  50399736280750137837615307127761926849034352625200 
  01588853514733161170210396817592151090778801939317 
  81141945452572238655414610628921879602238389714760 
  88506276862967146674697562911234082439208160153780 
  88989396451826324367161676217916890977991190375403 
  12746222899880051954444142820121873617459926429565 
  81746628302955570299024324153181617210465832036786 
  90611726015878352075151628422554026517048330422614 
  39742869330616908979684825901254583271682264580665 
  26769958652682272807075781391858178889652208164348 
  34482599326604336766017699961283186078838615027946 
  59551311565520360939881806121385586003014356945272 
  24206344631797460594682573103790084024432438465657 
  24501440282188525247093519062092902313649327349756 
  55139587205596542287497740114133469627154228458623 
  77387538230483865688976461927383814900140767310446 
  64025989949022222176590433990188601856652648506179 
  97023561938970178600408118897299183110211712298459 
  01641921068884387121855646124960798722908519296819 
  37238864261483965738229112312502418664935314397013 
  74285319266498753372189406942814341185201580141233 
  44828015051399694290153483077644569099073152433278 
  28826986460278986432113908350621709500259738986355 
  42771967428222487575867657523442202075736305694988 
  25087968928162753848863396909959826280956121450994 
  87170124451646126037902930912088908694202851064018 
  21543994571568059418727489980942547421735824010636 
  77404595741785160829230135358081840096996372524230 
  56085590370062427124341690900415369010593398383577 
  79394109700277534720000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  00000000000000000000000000000000000000000000000000 
  000000000000000000. 
 
  [{Jargon  File}] 
 
  (1996-06-27)